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ABSTRACT 
This paper proposes a mathematical generalization of certain epistemological inabilities with 
heuristic implications for philosophy in general and mathematical set theory specifically. With 
"The world is real. But not reality." constituting the ontological commitment and "everything is 
number" being the enforced working hypothesis throughout the here presented, a heuristic 
principle of inability is postulated and further abstracted in set theoretical terms with a variation 
of the Cantor set. The derived properties of this variation in conjunction with the application of 
the heuristic principle of inability yield new aspects of reality which eventually motivate an 
axiom of reality based on a single abstractum per definitionem. 
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INTRODUCTION 
"The world is real. But not reality." shall 
serve as our ontological commitment for 
the here presented conjectures. It reflects 
epistemological limits with a heuristic 
approach on the non-increasable absolute 
adjective "real". 
In order to orchestrate the heuristics, we 
associate any axiom with a limit. 
Whatever is not deducible out of it or 
whatever is in contradiction to it is 
deemed unreachable. Nevertheless, this 
principle can be inverted: If a formal 
system reaches limits in its specific field 
of application which cannot be 
overcome, independent of the degree of 
effort spent, it may pave the way for new 
solutions, to knowledge increase, and 
eventually to new axioms. 
In a methodological sense, the heuristic 
principle of inability defines any problem 
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by its solution, so that in many cases it 
may be that the original problem will be 
altered by the solution, i.e., that the 
original problem will be redefined by a 
new axiom.  
Picturing the tremendous efforts by 
countless inventors, e.g., to design a 
mechanism, which was intended to work 
energetically self-sufficient, provides 
with a well-established illustration of the 
heuristic principle of inability [cf. Born 
1962]: 
Eventually, the failure to succeed with a 
perpetuum mobile was formalized and 
represents a fundamental physical law to-
day, namely the law of conservation of 
energy. [cf. Whittaker 1949] 1 
Analogously, the second law of 
thermodynamics was derived from the 
inability to transform thermal energy 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

1 Whittaker called it "postulates of impotence" 
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without energetic effort, i.e., without 
work. Unlike the first law of 
thermodynamics, this second law of 
thermodynamics doesn’t represent a 
conservation of a physical value, but 
rather states that a certain value called 
"entropy" is constant, i.e., irreversible. 
With a logic criticism of the concept of 
simultaneousness as well as of the 
inability to observe the postulated ether 
as the carrier for electromagnetic 
phenomena, the well-established Theory 
of relativity provides another illustrative 
example of the heuristic principle of 
inability: 
While it was state-of-the-art in the 
scientific community to try to materialize 
the ether through various empirical 
measures, all efforts to do so failed 
persistently [Michelson and Morley 
1887]. Eventually, Newtonian mechanics 
were in course of modification by 
physicists like Hendrik Antoon Lorentz 
(1853-1928) and Poincaré (1854-1912) 
which proved successful to a certain 
extent. 
In this contest it was Einstein (1879-
1955) who declared the inability to 
materialize an ether as a principle by 
assuming the speed of light to be constant 
and independent of any state of motion 
[Einstein 1905]. Consequently, the 
physical concept of simultaneousness 
needed to be amended in order to avoid 
the circulus vitiosus, which originated by 
the fact, that an empirical establishment 
of the speed of light requires the value of 
the latter beforehand to synchronize the 
very clocks used for the measurement. 
As a matter of fact, the original problem 
of the ether was replaced by a new view 
of physical dynamics. 
Together with the impossibility to 
distinguish between inertial and 
gravitational mass properties of 
Newtonian mechanics, the Equivalence 
principle of Einsteins's General relativity 
and the new relativistic dynamics led to a 

deep revision and increased 
interdependency of the concepts of space, 
time, matter, energy, and 
electromagnetism. 
In the same time, the emergence of 
quantum mechanics shed a different light 
on determinism than it was previously 
anticipated. It may serve as prime-
example of our heuristic principle of 
inability:  
Before the discovery of the Uncertainty 
principle [Heisenberg 1927], it was 
assumed that physical values such as 
location coordinate and motion quantity 
could at least theoretically be measured 
to whatever degree the spectrum of real 
numbers ℝ would allow to, i.e., with 
infinite precision in terms of decimals. In 
contrast in turned out, that the location 
coordinate is always conjugated to the 
motion quantity in a sense that the 
precision of measurement remains 
always below an absolute limit, namely 
the Planck constant ℎ yielding the aspect 
of complementarity which will be 
introduced in the final part of this paper. 
But as in the previous historic examples, 
setting the conjugation with its absolute 
limit as principle not only limited the 
scope of the deterministic paradigm, but 
led physics to elaborate and control the 
mechanics of measurement sensitive 
objects as observed in atomic and 
subatomic scales, i.e., the field of 
application and the associate knowledge 
grew. 
	  

EPISTEMOLOGICAL PART 
In order to establish a sound 
philosophical framework for the 
introduction of the heuristic principle of 
inability, it is indicated to sum-up the 
epistemological essence laid out in the 
historic examples: 
 



Daghbouche K. 5 

Firstly, there is a fundamental inability 
for an axiom or set of axioms to cope 
with certain phenomena or paradigms. 
 
Secondly, this inability is set as a 
principle, i.e., as a new axiom. 
 
Thirdly, the new axiom redefines the 
problem where the inability first applied. 
 
As a next step, we increase the level of 
abstraction for this epistemological 
process as a whole by only investigating 
the formal aspect of it, i.e., by analyzing 
how language is projected to the objects 
of our imagination and perception. 
In Figure 1, N represents natural 
language and A axiomatized (or 
formalized) language (such as 
mathematics). The languages are 
symbolized in "boxes" to express their 
actual finiteness in terms of symbols and 
grammar. The axiomatized language A is 
symbolically a subset of N because it is 
thought to be less expressive than natural 
language, i.e., natural language generally 
acts as the meta-language of axiomatized 
languages. 
 

 
Figure 1 
 
Being equipped with language, we 
project (P) it to objects of our 
imagination and perception, symbolized 
as reality (R) [Figure 2]: 
 

 
Figure 2 

This projection is critical in multiple 
aspects with the circularity yielding an 
infinite regress being obvious: Any 
object of perception or imagination 
requires a corresponding term in 
language and vice versa, we only 
perceive or imagine reality in terms of 
our language capabilities (the projection 
(P) is reciprocal)2. 
According to our ontological 
commitment, the by far most critical 
aspect however seems to be represented 
by the fact of applying language to 
objects of our imagination and perception 
at all: The act of projecting language to 
reality (and vice versa, reality to 
language) necessarily reduces reality to 
the circularity of our language and 
perceptive capabilities, whether 
axiomatized, instrument assisted, or not. 
Or, as Azzouni recently pointed out: "[…] 
what resources are available to argue for 
a criterion for what exists? Philosophers 
typically employ ontic intuitions, 
methodological claims, and (sometimes) 
descriptions of scientific practice in their 
philosophical arguments for one or 
another criterion. Establishing that 
argumentation for any such criterion 
always yields indeterminate fruit, 
therefore, might seem to require an 
analysis (or at least a survey) of more 
than two thousand years of metaphysical 
thought." [Azzouni 2010] 
 
In order to further strengthen and explore 
the conjecture of the principle inability 
without discussing the various 
ontological and semantic concepts, we 
will investigate the most abstract and 
simple objects of our language, namely 
the mathematical linear continuum and 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

2 An exception is constituted by meditation where 
any language and affects are kindly released. 
Consequently, this meditative aspect of 
perception cannot be communicated in any 
language. 
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its constituents (points or numbers) 
[Figure 3]: 
 

 
Figure 3 
 
Applying the Pythagorean statement 
"everything is number", our working 
hypothesis essentially consists of 
substituting the term "reality" with the 
continuum while preserving our language 
tools (natural + axiomatized) and 
defining projections as bijective functions 
(one-to-one correspondences). 
It shall enable us to focus on abstract 
processes of projections in sufficiently 
defined terms (if ever) as well as on a 
strict formal discussion where any object 
of our "reality" is projected to just 
numbers or points. 
If we can provide formal evidence that 
the establishment of a single point and 
the associated linear continuum of points 
represents a fundamental inability, it is 
assumed to have a strong argument for 
having formalized our heuristic principle 
of inability in a most general sense. The 
heuristic aspect, i.e., a new set theoretical 
meta-axiom along with some empirical 
leads, shall constitute the concluding part 
of this paper. 
 
FORMAL PART 
Following the most influential analysis of 
the foundations of set theory to connect 
discrete points or numbers to a 
continuum, Abraham Fraenkel (1891-
1965), Yehoshua Bar-Hillel (1915-1975) 
and Azriel Levy (1934- ) concluded that 
"Bridging the gap between the domains 
of discreteness and continuity, or 

between arithmetic and geometry is a 
central, presumably even the central 
problem of the foundations of 
mathematics." [Fraenkel 1973]. 
This debate can be traced back as far as 
to the Eleatic philosophers such as 
Parmenides (515 B.C.), and Zeno (460 
B.C.) [cf. Stokes 1971].  
Putting a time-stamp on the reinitiation 
of the whole discussion, Karl Weierstrass 
(1815-1897) could be regarded as the 
father of modern analysis being the first 
to come up with a complete 
arithmetization of mathematical analysis. 
To do so, Weierstrass defined a positive 
real number to be a countable set of 
positive rational numbers for which the 
sum of any finite subset always remains 
below a pre-assigned bound. Eventually, 
he broke down conditions which would 
enable a comparison of two such “real 
numbers” in terms of equality or 
magnitude (strictly smaller than one 
another) [cf. Bell 2010]. 
But the most revolutionary thinker in 
contemporary history was Georg Cantor 
(1845-1918). His view of the continuum 
as infinite point sets laid the foundations 
of his theory of transfinite numbers. 
From there on, the geometric origin of 
the continuum as a collection of points 
was transferred to the current concept of 
general abstract set theory. 
Just like Weierstrass and Richard 
Dedekind (1831-1916), Cantor intended 
to provide a definition of real numbers 
which avoids their a priori existence. To 
do so, Cantor looked at rational numbers 
and following Cauchy (1789-1857), he 
called a sequence of rational numbers a1, 
a2,…, an,… a fundamental sequence if 
there exists an integer N such that, for 
any positive rational ε, there exists an 
integer N, such that 

€ 

an+m − an  < ε for all 
m and all n > N. Any sequence 

€ 

< an >  
which satisfies this condition is then said 
to have a definite limit b. Dedekind 
interpreted irrational numbers as "mental 
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objects" associated with cuts (Dedekind 
cuts). In analogy, Cantor regarded these 
well-defined limits as symbols which 
represent fundamental sequences 
(hereafter Weiserstrass-Dedekind-Cantor 
program). Accordingly, the domain B of 
limit points are considered an 
enlargement of the domain A of rational 
numbers, i.e., representing real numbers. 
Cantor showed that every single point of 
the line corresponds to a definite element 
of the domain B while each element of B 
determines a definite point on the line. 
Without providing proof of this intuitive 
property of the continuum, Cantor 
introduced it as an axiom, just as 
Dedekind had done with his own 
principle of continuity. We will get back 
to this constitutive axiom further down. 
While prior Cantor's work the continuum 
has essentially been regarded as an 
unanalyzable concept, Cantor gave it an 
arithmetic framework. With this at hand, 
he identified the set of points thought as 
the linear continuum with numbers, 
enabling the comparison of "sizes" of 
point sets with the well established 
concept of unambiguous bijections 
[Figure 4 and 5]: 
 

 
Figure 4 Every point of the finite unit interval 
[0;1] which is part of the infinite linear continuum 
ℝ, has a bijective projection to the points of the 
semi-circle (1:1 correspondence). 
 

 

Figure 5 Analogously, every point of the 
infinite linear continuum ℝ has a bijective 
projection to the points of the semi-circle (1:1 
correspondence), hence, the number of points of 
the finite unit interval [0;1] is the same as of the 
total linear continuum ℝ (again a 1:1 
correspondence). 
 
Cantor not only showed that a finite unit 
interval [0;1] of an infinite line has the 
same cardinality (magnitude or power in 
terms of number of elements) as the 
infinite line itself, but he also generalized 
this finding and showed, that all spaces 
En  have the same cardinality as the set 
of real numbers in the one dimensional, 
finite unit interval [0;1]. Eventually, 
Cantor stated the hypothesis (Continuum 
Hypotheses or CH), that any infinite 
point set has either the cardinality of the 
set of natural numbers  !  which are 
denumerable, i.e., ℵ0  (aleph zero), or that 
of the non-denumerable unit interval 
[0;1] of the real line, i.e., 

€ 

2ℵ0 = C  which 
has the next highest cardinality ℵ1 = C . 
Referring to the definition of real 
numbers in terms of fundamental 
sequences, Cantor introduced the 
Euclidean n-space 

€ 

E n  as the set of all n-
tuples of real numbers <x1,x2,…,xn>, 
calling each such an arithmetical point of 

€ 

E n . The distance between two such 
points is represented by 
 

€ 

ʹ′ x 1 − x1( )2 + ʹ′ x 2 − x2( )2 + ...+ ʹ′ x n − xn( )2  
 
Eventually, an arithmetical point-set in 

€ 

E n  is any point-aggregate of the points 
of the Euclidean n-space 

€ 

E n . 
Having singled out 

€ 

E n  as the analytical 
framework of the linear continuum, 
Cantor defined the derived set of a point 
set P to be the set of limit points of P, 
where a limit point of P is a point of P 
with infinitely many points of P 
arbitrarily close to it [Cantor 1932: 140]. 
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He called a point set perfect if it 
coincides with its derived set. Cantor 
himself realized that the condition of 
"perfectness" is insufficient to 
characterize the intended, intuitive 
continuum. He noticed in a footnote [cf. 
Cantor 1932: 207] that one could 
construct perfect sets which are just 
nowhere dense in any interval of the 
linear continuum. Today it is coined 
"Cantor set" or "Cantor ternary set" and 
constitutes an illustrative argument in 
furtherance of our heuristic principle of 
inability: 
Following Cantor, a perfect, nowhere 
dense set in any closed interval of the 
linear continuum ℝ is defined as real 
numbers such as: 
 

Def. 1  

€ 

x =
c1
3

+ ...+ cv
3v

+ ... 

 
where 

€ 

cv  can be regarded as having the 
values 0 or 2 for each integer v. [cf. 
Fleron 1994] 
 
Def. 2  A set S is perfect if S = S', 
where S' is the set of all the limit points 
of S.  
 
Def. 3  A set S is nowhere dense 
if the interior of the closure of S is empty. 
 
Cantor introduced this set as simply as: 
 
Let I be an interval [0;1]. Split I into 
thirds. Remove the open set that 
represents the middle third and let A1 be 
the remaining set: 
 

Def. 4  

€ 

A1 = 0,1
3

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
∪
2
3
,1

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

 
Removing the open middle third interval 
from each of the two closed sets in A1 
continuously yields the remainder A2: 
 

Def. 5 

€ 

A2 = 0,1
9

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
∪
2
9
,1
3

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
∪
2
3
, 7
9

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
∪
8
9
,1

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

Each consecutive step k for k 

€ 

∈ ℝ 
consists of removing the open middle 
third interval from each of the closed sets 
in Ak. We call the remaining set 

€ 

Ak+1. For 
each k 

€ 

∈ ℝ, Ak is the union of 2k  closed 
intervals each of length 

€ 

3−k . 
 

Def. 6  
  

€ 

C3 = Ak
k=1

∞

∩
 

 

	  

Figure 6 Consecutive removal process of the 
middle third interval of every closed interval 
leaving a single point "extended" with maximum 
"disconnection" over the whole unit interval [0;1] 
(cf. fn 3: 13). 
 
The ternary (base 3) expansion of the 
Cantor set C only consists of 0s and 2s 
because at any step of removal, every 
number with a ternary expansion 
containing a 1 is removed. In the first 
step of the removal any number 
remaining can be viewed of having the 
digit c1 = 0 or 2 where 

€ 

x  = 0.c1c2c3…, 

because if 

€ 

x  

€ 

∈ 

€ 

0,1
3

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
, c1 = 0 and if 

€ 

x  

€ 

∈ 

€ 

2
3
,1

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
, c1 = 2. 

 
For 

€ 

x  remaining after n removals, the 
repetition for each step of removal yields 
cn being either 0 or 2. 
 
The constitutive properties of the Cantor 
set C3 are severally proven [cf. Wikipedia 
2012] so that we will just list them as 
follows and eventually get into one or the 
other proof, as required: 
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• non-denumerable (cardinality of the 
continuum) 

• contains no intervals (all intervals 
were removed) 

• zero lenght (Euclidian point topology 
in 

€ 

E n) 
• compact (countable many endpoints) 
• nowhere dense (no connected points at 

all) 
• Hausdorff dimension log2/log3 
 
In order to hold on to his "intuitive" 
definition and not being obliged to 
consider constructions of perfect sets in 
the manner of C3 as a continuum, Cantor 
introduced an additional condition which 
he called a "connected set" representing a 
metric definition: A point set T is 
connected in Cantor's sense if for any 
pair of its points t, t′ and any arbitrarily 
small number ε there is a finite sequence 
of points t1, t2,…, tn of T for which the 
distances [tt1], [t1t2], [t2t3], …, [tnt′] are all 
less than ε. Cantor was now able to 
define a continuum to be a perfect 
connected point set: "Die perfekten 
Punktmengen S sind keineswegs immer 
in ihrem Innern das, was ich in meinen 
vorhin genannten Arbeiten "überalldicht" 
genannt habe[11)]; deshalb eignen sie sich 
auch noch nicht allein zur vollständigen 
Definition eines Punktkontinuums, wenn 
man auch sofort zugeben muß, dass 
letzteres stets eine perfekte Menge sein 
muß. 
Es ist vielmehr noch ein Begriff 
erforderlich, um im Verein mit dem 
vorhergehenden das Kontinuum zu 
definieren, nämlich der Begriff einer 
zusammenhängenden Punktmenge T. 
Wir nennen T eine zusammenhängende 
Punktmenge, wenn für je zwei Punkte t 
und t′ derselben bei vorgegebener 
beliebig kleiner Zahl ε immer eine 
endliche Anzahl Punkte t1, t2,…, tv von T 
auf mehrfache Art vorhanden sind, sodaß 
die Entfernungen tt1, t1t2, t2t3, …, tvt′ 

sämtlich kleiner sind als ε. [Es handelt 
sich also um eine "metrische" 
Eigenschaft des Kontinuums.] 
Alle uns bekannten geometrischen 
Punktkontinua fallen nun auch, wie leicht 
zu sehen, unter diesen Begriff der 
zusammenhängenden Punktmenge; ich 
glaube aber nun auch in diesen beiden 
Prädikaten "perfekt" und 
"zusammenhängend" die notwendigen 
und hinreichenden Merkmale eines 
Punktkontinuums zu erkennen und 
definiere daher ein Punktkontinuum 
innerhalb Gn als perfekt-
zusammenhängende Menge[12)]. Hier sind 
"perfekt" und "zusammenhängend" nicht 
bloße Worte, sondern durch die 
vorangegangenen Definitionen aufs 
schärfste begrifflich charakterisiert, ganz 
allgemeine Prädikate des Kontinuums." 
[Cantor 1932: 194] 
 
As introduced earlier, both, Dedekind and 
Cantor, were fully aware of the 
axiomatic, yet not necessary assumption 
of any continuity within the apparently 
perceived, three dimensional physical 
space, which both however considered as 
reality: "An diese Sätze knüpfen sich die 
Erwägungen über die Beschaffenheit des 
der realen Welt, zum Zwecke 
begrifflicher Beschreibung und Erklärung 
der in ihr vorkommenden Erscheinungen, 
zugrunde zu legenden dreidimensionalen 
Raumes. Bekanntlich wird derselbe 
sowohl wegen der in ihm auftretenden 
Formen, wie auch namentlich mit 
Rücksicht auf die darin vor sich 
gehenden Bewegungen als durchgängig 
stetig angenommen. Diese letztere 
Annahme besteht nach den 
gleichzeitigen, voneinander 
unabhängigen Untersuchungen 
Dedekinds (M.s. das Schriftchen: 
Stetigkeit und irrationale Zahlen von R. 
Dedekind, Braunschweig 1872) und des 
Verfassers (Mathem. Annalen Bd. V, 
S.127 und 128) [II5, S.96] in nichts 
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anderem, als daß jeder Punkt, dessen 
Koordinaten x, y, z in bezug auf ein 
rechtwinkliges Koordinatensystem durch 
irgendwelche bestimmte reelle, rationale 
oder irrationale Zahlen vorgegeben sind, 
als wirklich zum Raume gehörig 
betrachten wird, wozu im allgemeinen 
kein innerer Zwang vorliegt und worin 
daher ein freier Akt unserer gedanklichen 
Konstruktionstätigkeit gesehen werden 
muß. Die Hypothese der Stetigkeit des 
Raumes ist also nichts anderes, als die an 
sich willkürliche Vorraussetzung der 
vollständigen, gegenseitig-eindeutigen 
Korrespondenz zwischen dem 
dreidimensionalen rein arithmetischen 
Kontinuum (x, y, z) und dem der 
Erscheinungswelt zugrunde gelegten 
Raume.[1] 
Unser Denken kann aber mit gleicher 
Leichtigkeit von einzelnen 
Raumpunkten, sogar wenn sie 
überalldicht vorkommen, sehr wohl 
abstrahieren und sich den Begriff eines 
unstetigen dreidimensionalen Raumes  
von der im vorhergehenden 
charakterisierten Beschaffenheit bilden. 
Die sich alsdann ergebene Frage, ob auch 
in so unstetigen Räumen  stetige 
Bewegung gedacht werden könne, muß 
nach dem Vorangehenden unbedingt 
bejaht werden, weil wir gezeigt haben, 
daß je zwei Punkte eines Gebildes  
durch unzählig viele stetige, vollkommen 
reguläre Linien verbunden werden 
können. Es stellt sich also 
merkwürdigerweise heraus, daß aus der 
bloßen Tatsache der stetigen Bewegung 
auf die durchgängige Stetigkeit des zur 
Erklärung der Bewegungserscheinungen 
gebrauchten dreidimensionalen 
Raumbegriffs zunächst kein Schluß 
gemacht werden kann. Daher liegt es 
nahe, den Versuch einer modifizierten, 
für Räume von der Beschaffenheit  
gültigen Mechanik zu unternehmen, um 
aus den Konsequenzen einer derartigen 
Untersuchung und aus ihrem Vergleich 

mit Tatsachen möglicherweise wirkliche 
Stützpunkte für die Hypothese der 
durchgängigen Stetigkeit des der 
Erfahrung unterzulegenden Raumbegriffs 
zu gewinnen." [Cantor 1932: 156-157] 
 
To bridge the different concepts of 
arithmetic and geometry, Cantor finally 
needed to introduce the axiom of 
connecting any arithmetic value to a 
specific point of a line: "Daß nun ebenso 
auch die Zahlengrößen der Gebiete C, D, 
... befähigt sind, bekannte Entfernungen 
zu bestimmen, ergibt sich ohne 
Schwierigkeit. Um aber den in diesem § 
dargelegten Zusammenhang der Gebiete 
der in §1 definierten Zahlengröße mit der 
Geometrie der geraden Linie vollständig 
zu machen, ist nur noch ein Axiom 
hinzuzufügen, welches einfach darin 
besteht, daß auch umgekehrt zu jeder 
Zahlengröße ein bestimmter Punkt der 
Geraden gehört, dessen Koordinate 
gleich jener Zahlengröße, und zwar im 
dem Sinne gleich ist, wie solches in 
diesem § erklärt wird[1]. 
Ich nenne diesen Satz ein Axiom, weil es 
in seiner Natur liegt, nicht allgemein 
beweisbar zu sein. 
Durch ihn wird denn auch nachträglich 
für die Zahlengrößen eine gewisse 
Gegenständlichkeit gewonnen, von 
welcher sie jedoch ganz unabhängig ist." 
[Cantor 1932: 97] 
 
Having singled out the intuitive path of 
the Weiserstrass-Dedekind-Cantor 
program explicitly in terms of 
connectivity, continuity, and 
arithmetization, it is about time to 
account for the implicit consequences. As 
multiply shown, their axiomatic program 
intended a complete arithmetization 
along with a geometric materialization of 
the continuum. 
The great idea was to combine arithmetic 
notions and associated values as the 
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discrete per definitionem with metric 
continuity. 
In arithmetic, we consider those values as 
different which differ in any term a, no 
matter in which position a1a2a3...an( ) . Or 
else, without any exception, all arithmetic 
values have to be considered as 
equivalent with the concept of distinct 
numbers being obsolete. Accordingly, the 
distinct character of arithmetic values 
represents Cantor's key argument for the 
non-demunerability of the set of real 
numbers ℝ [cf. Cantor 1991: 35; letter 
to Dedekind 7.12.1873]. 
 
In geometry, a point shares the same 
distinct property as long as observed 
isolated. Therefore, the bijective 
connection between arithmetic values 
and geometric points seems evident. 
However, applying the axiom of 
continuity may yield to the asymmetry of 
a discrete but connected continuum 
which may neither be a necessary nor a 
commonly "desired" property of the 
latter. 
Therefore, thinkers such as Brentano 
(1838-1917), C. S. Peirce (1839-1914), 
Poincaré, L. E. J. Brouwer (1881-1966) 
and Weyl (1885-1955) to name a few, 
were opposed to the concept of a discrete 
but connected continuum. For any 
aggregate number of geometric points 
maintains zero topological dimension just 
as any aggregate of numbers will remain 
different if they differ in any decimal. If 
points however would constitute a 
dimensional object such as a continuous 
line, it would imply that the continuity of 
every point would be constituted by 
smaller points, and that: ad infinitum. But 
as soon as we try to constitute a 
geometric line with formerly isolated 
points connected to arithmetic values, the 
chasm between the discrete and 
continuity unfolds as deep as this ancient 
debate already lasts. 

The crucial point to define the continuum 
throughout the whole debate, from the 
ancients to the here presented, consists of 
having recognized the constraints 
imposed by holding to any idea of space 
metric and associated topology, but 
having failed to interpret this constraint 
formally. 
In an effort to deliver an appropriate 
formalization, we will now enforce the 
idea of a total arithmetization of the 
linear continuum. Therefore, we 
generalize C3 in a way, that any 
topological dimension whatsoever is 
eliminated: 
While it can easily been shown that 
although C3 is has the Lebesgue measure 
of a single point of Euclidian dimension 
zero due to the removal of all one-
dimensional line intervals with total 
length 1 [cf. Wikipedia 2012], C3 can still 
be associated with a so called Hausdorff 
dimension [cf. Hausdorff 1919] in a non-
Euclidean Hausdorff topology with 
 

€ 

dim C3( ) =
log2
log3

≈ 0.63 

 
A variation of deriving the Cantor set 
will provide us with Hausdorff 

€ 

dim Ck( ) = 0 so that we look at a non-
dimensional point without any topologic 
association whatsoever as follows [cf. 
Falconer 1985]: 
 
Def. 7 The dimension of the Cantor 

ternary set (Ck) is: 

€ 

d =
log 1
2

log 1
2
−
1
2k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 

Def. 8 Let 

€ 

Φi{ }
i=1

k
 be a collection of 

similarities such that 

€ 

E ⊆  ℝn is invariant 
with respect to 

€ 

Φi{ }
i=1

k
. If 

€ 

Φi{ }
i=1

k
 satisfies 

the open set condition and ri will be the 
ratio of the i-th similarity 

€ 

Φi , then the 
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Hausdorff dimension of E is equal to the 
unique positive numbers for which 

€ 

ri( )s =1
i=1

k

∑ . 

 
Let 

€ 

Dk{ }  now be a collection of sets 
defined by k for 

€ 

k ≥ 2  (for k=0 or k=1 
either no interval at all or the whole 
interval [0;1] will be removed not 
yielding the properties of a Cantor set) in 
which each set is build by a repetitive 
removal of an open interval of length 

€ 

1− 2
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  from the center of each closed 

interval [0;1]. Only intervals of length 

€ 

1
k

 

will remain on each side. We now only 
vary the length of the side intervals in 
terms of k but keep the ternary property. 
Then we remove the interval in-between 
where the original method thought by 
Cantor, as already discussed, only 
removed the open middle third interval 
with no variation in terms of k, i.e., k was 
a constant with k=3. 
 
Applying Def. 7 we calculate the general 
Hausdorff dimension for any 

€ 

k ≥ 2 : 
 
Let 

€ 

Φ1 x( )  and 

€ 

Φ2 x( ) be: 
 

€ 

Φ1 x( ) =
1
k
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ x  and 

€ 

Φ2 x( ) =
1
k
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ x +1− 1

k
.

 (1.0) 

With 
  

€ 

Ck = Φi
i=1

2

∪ Ck( ) and 

€ 

r1 =
1
k

 as well 

as similarly 

€ 

r2 =
1
k

 we resolve s such that  

 

€ 

ri( )s =1
i=1

2

∑   (1.1) 

 
and 

€ 

2 1
k
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 
s

=1 iff 

€ 

s =
log2
logk

 (1.2) 

and finally: 
 

€ 

dim Ck( ) =
log2
logk

 (1.3) 

 
where 
 

€ 

lim
k→∞

dim Ck( ) = lim
k→∞

log2
logk
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0  

 (1.4) 
 
As intended, we have a set Ck with 
Cantor set properties with 
 

€ 

dim Ck( ) = 0, (1.5) 
 
i.e., that of a point of a n-space En  
without any topology just by dividing the 
interval [0;1] into three subintervals 
where the smaller the length of the side 

intervals 

€ 

1
k

, viz., the larger the removed 

length of the interval 

€ 

1− 2
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , the more 

the Hausdorff dimension tends to 0. 
 
Proposition 1  Any point of an 
arbitrary n-space 

€ 

E n  has the cardinality 
of the linear continuum ℝ. 
Having provided Ck as a point of the n-
space 

€ 

E n  without any topology but with 
Cantor set properties, it can been shown 
that the cardinality of a single point is 
equal to that of the linear continuum ℝ: 
 
Proof  For each step of the 
repetitive removal process of an open 

interval of length 

€ 

1− 2
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  from the center 

of each closed interval [0;1] we can again 
combine a binary with a ternary notation 
as follows: 
Since every closed interval only has one 
open one removed, we can look at Ck of 
having a ternary expansion. We define a 
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function 

€ 

f x( )  onto the unit interval [0;1] 
and write in base 3 for every 

€ 

x ∈Ck  
either "0" or "2" without using the digit 
"1". Consequently, 

€ 

f x( )  is the point in 
the closed interval [0;1] whose binary 
expansion is obtained by substituting 
each digit "2" in the ternary expansion of 

€ 

x  by the digit "1". Eventually, all points 
of the unit interval [0;1] can be derived 
by this process while we already know 
about the unit interval [0;1] having the 
cardinality of the linear continuum ℝ. We 
know further, that any arbitrary n-space 

€ 

E n  has the cardinality of ℝ. Hence, the 
cardinality of a point is equal to that of 
the linear continuum ℝ. 
 
Apparently, our concept of a single point 
requires some further analysis. If we hold 
to the axiom of connecting any arithmetic 
value to a specific point of a line, we 
would have to assign the value 1 to our 
single point Ck.3 
 

	  

Figure 7 Every point of the infinite linear 
continuum ℝ has a bijective projection to the 
points of Ck. While Ck is represented by a single 
point of the arbitrary n-space En  without any 
topology defined thereon denoted with "1", it has 
the same cardinality as the whole linear 
continuum ℝ. 
 
If this conjecture was not obvious with C3 
which still implied a topological 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

3	   Note in course of correction: further detailed 
consideration suggests En

	  and the single integer 
point to be omni-equivalent.	  

dimension 

€ 

dim C3( ) =
log2
log3

≈ 0.63, it 

became inevitably with Ck. 
Stepping back to the very conception of 
the Cantor set, the supposed paradox of 
finding an equivalence between the 
cardinality of the linear continuum and a 
single point may result from missing 
clarity in the underlying assumptions of 
the very construction of the Cantor set 
with regard to which axioms are applied: 
From a mere arithmetic perspective the 
apparent paradox is less obvious since we 
know that arithmetic values per se do not 
"occupy" any space which we consider as 
physically real. It is only the axiom of 
connecting arithmetic values to 
geometric points which may give rise to 
an apparent paradox, for a geometric line 
induces much more association to any 
space which we consider as physically 
real than just arithmetic values which 
may only occupy a designated, imaginary 
arithmetic space at the most. 
But even this axiom is not yielding any 
paradox because as long as we do not 
associate a convention about a physical 
distance between any two distinct points 
(A, B) or arithmetic values (x, y), i.e., a 
length to any aggregate of points of a 
geometrical line, we can indeed "occupy" 
any imaginable number of points or 
arithmetic values in a non-spatial entity 
such as in a single point. 
Cantor's concern was about defining a 
continuum to be continuous. He only 
defined an Euclidean standard metric in 
arithmetic terms onto the closed unit 
interval [0;1] where the "interval removal 
process" only demonstrates the whole 
interval being left as a point but with the 
same number of points as the initial unit 
interval [0;1] with the induced topology 
of the Cantor set being maximally 
disconnected, i.e., discrete vs. 
continuous. 
However, this demonstration neither 
serves the purpose of holding to an idea 
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of an extended nor of a continuous reality 
because with any appropriate number of 
points or numbers (hereafter referred to 
as elements), we can just define any 
metric we want onto the elements, 
discrete or connected, and that is 
independent of any physical reality, 
extended or not. 
Therefore, the next important axiom 
enabling to hold to such an extended, 
continuous aspect of reality is the 
correspondence between a physical entity 
which is a convention about a physical 
length and between a metric distance of 
two elements. 
Unless we admit physical space with zero 
spatial extension to our imagination 
which we will enforce in furtherance of 
this paper, a Cantor set cannot be 
constructed physically where the smallest 
theoretical length with physical yet not 
directly observable property would be the 
Planck length   

€ 

ℓ p  [cf. Wikipedia 2012; 
2]. It is defined by three fundamental 
physical constants, namely by the speed 
of light in vacuum C, the reduced Planck 
constant   

€ 

! , and the gravitational constant 
G as:  
 

  

€ 

ℓ p =
"G
c 3

≈1.616199 ×10−35m  

 
where   

€ 

ℓ p  is a direct consequence of 
quantum mechanical measurement 
process which is restricted by 
Heisenberg's uncertainty principle as 
introduced earlier. Although the Planck 
length is a physical unit defining a 
discrete space metric, it is only about 
10−20 of the diameter of a "proton" and 
thereby orders of magnitudes smaller 
than today's precision of measurement. 
It is in this sense, that C3 and Ck so far 
only prove that the space which we 
consider as physically real requires a 
convention about a metric system such as 
the International System of Units where 

among others, a length is a reference to 
e.g., light. Eventually, a length unit can 
be arbitrarily defined as the length of the 
path travelled by light in vacuum in a 
fixed, finite time interval [cf. Wikipedia 
2012; 3]. 
Nevertheless, the most important axiom 
to explicitly observe when considering 
elements of our imagination or 
conventions about what we consider as 
physically real, is to connect the latter to 
reality. 
Hence, equivalent to proposition 1 would 
be the statement of a constant function f 
defined over all real numbers ℝ having 
the value 1, i.e., 

 
f (x) = 1 ∀x ∈! , 

where the projection of ℝ is surjective 
onto 1 and with a single point being 
equivalent to Ck in terms of number of 
elements being surjective onto ℝ, i.e., 
having a bijective identity function 

 
f (x) = x ∀x ∈! . But the identity 

can only hold if 1 is redefined in set 
theoretical terms being as well as both, a 
single unit and a multitude. It is therefore 
suggested, to shift the debate from the 
characteristics axiomatically and 
"intuitively" defined into the idea of an 
extended linear continuum to a closer 
look on the properties of 1. 
To do so, we reconsider the compact, 
perfect metric of Ck and its totally 
disconnected, discrete topology which 
was inherited from the Euclidean 
standard metric arbitrarily defined onto 
the closed unit interval [0;1]. And just as 
having arbitrarily defined the Euclidean 
standard metric onto the closed unit 
interval [0;1], we arbitrarily abstract any 
metric property away from Ck as we 
previously did with its Hausdorff 
topology with just non-denumerable 
elements remaining as a single point. 
 
Now we can consider the following 
proposition: 
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Lemma 1 1 has at least the 
cardinality к of Ck with Ck ≤ 1 . 
 
Proof  Since we know that 1 has 
at least the cardinality к of Ck, we only 
need to show that the power set of Ck is at 
least equal to 1, i.e., P(Ck)≤1 . 
 
To do so, we apply Cantor's theorem: 
For any set A, the set of all subsets of 
P(A) has a strictly greater cardinality 
than A itself with  P A( ) > A . 
 
While the number of points of P(Ck) are 
strictly greater than Ck, P(Ck) has any 
metric and topology abstracted away, 
hence still remaining the single point 1. 
 
Proposition 2  1 is at least equal 
to any cardinality кx with  кx ≤ 1 . 
 
Proof  Since we know that 1 has 
at least the cardinality к of Ck, we only 
need to show that there is always a subset 
A of Ck that is smaller than Ck, i.e., 
A⊆ P(A) . 
 
To do so, we apply the inversion of 
Cantor's theorem: 
For any power set P(A), the set A is 
strictly smaller than P(A) with 

 A < P A( ) . 
Obviously, with a recursion on 

 P A( ) = 2A  we can generate greater and 
greater power sets of any given set while 
the number of points of the ever-
increasing power sets are always less or 
equal to the single point. 
 
We reconnect this finding to Cantor's 
original view of magnitudes when he 
defined a cardinal number being the 
result of a double abstraction in the 
following sense: 

Right after defining a set as a gathering 
into a whole of definite, distinct objects 
of our perception and of our thought, 
which Cantor called elements of a set, he 
describes cardinality as an abstraction 
from the nature of the elements m of a set 
M. With some order may being left 
within and among these elements m, one 
abstracts even from that order to compare 
the magnitude of any two sets M and N 
where the elements itselves cannot be 
distinguished any further all becoming 
"one" as an intellectual image or 
projection of any given set M existing in 
our spirit. For any set N that is bijective 
with M the cardinal number would 
eventually be the same, i.e., 1: 
"‚Mächtigkeit‘ oder ‚Kardinalzahl‘ von 
M nennen wir den Allgemeinbegriff, 
welcher mit Hilfe unseres aktiven 
Denkvermögens dadurch aus der Menge 
M hervorgeht, daß von der 
Beschaffenheit ihrer verschiedenen 
Elemente m und von der Ordnung ihres 
Gegebenseins abstrahiert wird. 
Das Resultat dieses zweifachen 
Abstraktionsakts, die Kardinalzahl oder 
Mächtigkeit von M, bezeichnen wir mit 

                              M .  (3) 

Da aus jedem einzelnen Elemente m, 
wenn man von seiner Beschaffenheit 
absieht, eine ‚Eins‘ wird, so ist die 
Kardinalzahl M selbst eine aus lauter 
Einsen zusammengesetzte Menge, die als 
intellektuelles Abbild oder Projektion der 
gegebenen Menge M in unserem Geiste 
Existenz hat." [Cantor 1932: 282-283] 
 
With that, the collection of all sets N with 
N = M  exists ad infinitum where for 

every x, the set {x} has exactly one 
element {1} with cardinality 1 so that the 
double abstraction leaves an object 
without any specific properties other than 
existing. 
If now, according to Cantor, a well 
determined, finished set would have a 
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cardinality which would not correspond 
to any aleph, it would need to include 
subsets whose cardinality is any of the 
alephs, i.e., this set would need to carry 
the totality of alephs within itself: 
"‚Wenn eine bestimmte wohldefinierte 
fertige Menge eine Cardinalzahl haben 
würde, die mit keinem der Alefs 
zusammenfiele, so müßte sie 
Theilmengen enthalten, deren 
Cardinalzahl irgend ein Alef ist, oder mit 
anderen Worten, die Menge müßte die 
Totalität aller Alefs in sich tragen.‘" 
[Cantor 1991: 388; letter to Hilbert 
26.9.1897] 
 
In furtherance of this idea, we find 1 
being finite with its ordinal number α and 
cardinal number к being identical, i.e., 1. 
Hence, 1 is not any transfinite cardinal 
ℵ. However, proposition 2 showed that 

 1 ≥ anyк  which implies that 1 is 
constant and at least equal to the cardinal 
number  ℵ0  of ! , while being always 
greater than any ℵ: 
 
Def. 9 
 
 Ω = α α  is an ordinal number{ }   
 
where for all ordinal numbers α there is 
an ordinal number β such that 

 
W α( ) < W (β ) . 

 
Reinstating Cantor's question if there is a 
system ת (taw)  
of all alephs ℵ0,ℵ1,  ...,  ℵω ,ℵω+1,  ... [ ]  

of all transfinite cardinal numbers that is 
not an aleph [cf. Cantor 1991: 410; letter 
to Dedekind 3.8.1899] yields: 
 
Proposition 3  ℵα α ∈Ω{ }  ת =1>
 

Proof  ת shall be a set with ℵ*  
being the supremum of a set of cardinal 
numbers ℵ with ℵ*  = sup (ת). 
Since the supremum of a set of cardinal 
numbers is itself a cardinal number, we 
have ℵ*  .ת ∋
While ת contains all ℵ*  with к∈ת, hence 
 not containing a greatest element and к ת
= ℵα  so that к <ℵα+1  remains ת ,
constantly 1 with к <ℵα+1 < 1 . 
 
With 1 = ת we apparently have a finished 
set (just as any aleph is considered to be a 
finished set) that has a cardinality which 
does not correspond to any aleph and 
which includes subsets whose cardinality 
is indeed any of the alephs, i.e., ת carries 
the totality of alephs within itself. 
However, the all-imposing question to be 
answered is whether ת is a consistent set. 
Again with Cantor we find that if we 
consider any finite multitude to be 
consistent, we can extend this attribute to 
any transfinite multitude as represented 
by the alephs. And just as the consistency 
of any finite multitude solely depends on 
the unprovable axiom of arithmetic with 
1+1 being 2, so is the extension to the 
transfinite arithmetic with its cardinal 
numbers represented by alephs: 
"Man muß die Frage aufwerfen, woher 
ich denn wisse, daß die wohlgeordneten 
Vielheiten oder Folgen, denen ich die 
Cardinalzahlen ℵ0,ℵ1,...,  ℵω0

,...,  ℵω1
,...  

zuschreibe, auch wirklich ‚Mengen‘ in 
dem erklärten Sinne des Wortes, d.h. 
‚konsistente Vielheiten‘ seien. Wäre es 
nicht denkbar, daß schon diese Vielheiten 
‚inkonsistent‘ seien, und daß der 
Widerspruch der Annahme eines 
‚Zusammenseins aller ihrer Elemente‘ 
sich nur noch nicht bemerkbar gemacht 
hätte? Meine Antwort hierauf ist, daß 
diese Frage auf endliche Vielheiten 
ebenfalls auszudehnen ist und daß eine 
genaue Erwägung zu dem Resultate 
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führt: sogar für endliche Vielheiten ist 
ein ‚Beweis‘ für ihre ‚Consistenz‘ nicht 
zu führen. Mit anderen Worten: Die 
Thatsache der ‚Consistenz‘ endlicher 
Vielheiten ist eine einfache unbeweisbare 
Wahrheit, es ist ‚Das Axiom der 
Arithmetik (im alten Sinne des Wortes)‘. 
Und ebenso ist die ‚Consistenz‘ der 
Vielheiten, denen ich die Alephs als 
Cardinalzahlen zuspreche, ‚das Axiom 
der erweiterten, der transfiniten 
Arithmetik.‘ ..." [Cantor 1991: 412; letter 
to Dedekind 28.8.1899]. 
 
Accordingly, we have to consider 1 = ת 
to be a consistent multitude while at the 
same time, 1 is evidently finite and 
represents absolute unity being the most 
common denominator, literally in terms 
of arithmetic and figuratively in terms of 
a geometric point. There seems to be no 
other conclusion than considering 1 itself 
representing an inconsistency at the very 
foundation of mathematics. 
 
CONCLUSION 
It is evident, that continued abstraction 
eventually yields to some concept of 
unity which is necessarily 
complementary, i.e., incorporates 
properties that may appear to be 
contradictory: While Cantor shed light 
on entities thought to be transfinite, 
unifying the concepts of finiteness with 
the infinite, e.g., with the finite unit 
interval [0;1] on the linear continuum 
having the same number of elements as 
the whole infinite linear continuum itself, 
the next level of abstraction merges both 
concepts to the most abstract notion, i.e., 
to the unit of a point and 1: 
 

 
Figure 8 Continued abstraction unified the 
concepts of finiteness with transfiniteness and 
eventually with unity where the non-denumerable 
number of elements of the closed unit interval 
[0;1] of the non-denumerable number of elements 
of the real line ℝ are identical whereas 1 as single 
unit incorporates all of these non-denumerable 
elements and all possible power sets thereof 
including all subset of ℝ. 
 
And no matter if we opt for the 
arithmetical language saying that 
"everything is number" or if we follow 
the geometrical track with points to 
express the projections of our 
imagination, at a certain stage of 
abstraction we have to account for the 
undefined or indefinable constituents of 
our reality. Otherwise our intuition about 
reality may be misled by the circularity 
imposed by unreflected language as 
introduced earlier in this paper. 
To finally formalize our heuristic 
principle of inability, we implement our 
epistemological scheme and consider 1, a 
point, or the very notion "something 
exists" as the most fundamental inability 
of our language in terms of an inability of 
determination. 
It is not surprising, that Cantor himself 
was very well versed in this essential 
constraint of language when he observed 
as well as agreed with Spinoza (1632-
1677), that "omnis determinatio est 
negatio" [Cantor 1932: 175]. 
Next, we set the inability of 
determination as a principle where we 
define the abstractum per definitionem 
by inversion: "omnis negatio est 
determinatio", which is equivalent to the 
complementary expression that total 
negation yields something or negation of 
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totality yields something where 
"something" can still be "everything" and 
"a single thing". 
The complementary nature of this 
"something" is different from what our 
common intuition and formal language 
previously suggested. We therefore 
substitute the Latin type-font for 1 with 
the corresponding Arabic font ١۱ leaving 
semantic freedom for both, multitudes 
and diversity as well as for unity, i.e., 
having distinguished it from a supposedly 
non-complementary, naïve arithmetic 
meaning. 
A streamlined formal expression for a 
total negation suggests to look for an 
already commonly known yet undefined 
expression such as 0 ⋅∞  which we define 
as follows: 
 
Def. 10  0 = negator 

∞ = totality 
١۱ = something 

 
Axiom of reality 0 ⋅∞=١۱ 
 
Finally, we apply the new axiom and 
redefine the debate about the linear 
continuum with the world of phenomena 
underlying reality where the inability of 
defining reality first appeared: 
With ١۱ not only being the most inclusive 
and powerful notion containing all and 
any elements of our thought, imagination 
and perception, but at the same time also 
being the most fundamental entity, the 
question of an extended, connected, 
divisible or non-divisible multitude or 
just an indivisible single entity is 
redefined by the question about how any 
kind of reality could consistently be 
expressed. 
In line with Cantor, our conclusion is 
that it cannot. The absolute, i.e., the 
absolute greatest (sive Deus) cannot be 
determined by us but only by itself: "Es 
versteht sich von selbst, dass hierunter 
[transfinite numbers] das Absolute d.h. 

das absolut Größte (sive Deus) nicht zu 
verstehen ist, welches nur durch sich 
selbst, nicht aber von uns determiniert 
werden kann; ..." [Cantor 1991: 174; 
letter to Laßwitz 3.2.1884] 
 
The here presented axiom of reality is a 
complementary notion where multiple, 
apparently contradictory properties on 
highest level of abstraction, i.e., the most 
undefined expression, yields something 
(١۱). 
Figure 9 tries to illustrate this process: 
leaving any determination outside of 
language, the most undetermined (١۱) 
unfolds in language as the most basic, 
abstract projection (1) for any kind of 
multitude, e.g., for a linear continuum. 
However, since language is only a 
projection of a complementary notion, 1 
is only real, but not reality, i.e., it 
provides the foundation for multiple 
aspects of reality such as frequently 
encountered in consistent, abstract 
language: 
 

 
 
Figure 9 From a strict analytical perspective, it 
seems evident to first define the constituents of 
our abstract thought before extending them to 
multitudes, whether being points or numbers. On 
the other hand, we have to account for the process 
of language development which evidently works 
from naïve phenomenology to more and more 
differentiation only eventually leading to 
abstraction and unification. 



Daghbouche K. 19 

If now the axiom of reality with its total 
negation or the equivalent negation of 
totality holds, it must not only provide 
our imagination with an intuitive idea 
about what exists and how it exists but it 
must also provide a prospective tool to 
deal with space as an aspect of reality. 
It is in this sense, that our analytic tools, 
e.g., axiomatized language in association 
with natural meta-language, are only 
expected to be consistent whereas our 
hypothesis about what is real can at the 
most be subject to observables in order to 
be tried and tested (falsification). 
Therefore, we can only presuppose 
reality according to our language 
capabilities while we associate the 
attribute "real" depending on our 
experience and its associated level of 
conformity, i.e., through empirical 
interaction in dedicated areas of 
application. 
If however, a notion about reality would 
only be set equal to any kind of 
consensus with regard to which language 
to apply, e.g., Euclidian Geometry vs. 
non-Euclidean Geometry for our 
imagination about "space", or a 
consensus with respect to which 
conventions about physical units to 
apply, this would imply that reality itself 
would be subject to change concerning as 
well as both, different languages and a 
consensus about it whereas beforehand, 
the term "reality" is per definitionem 
independent of our subjective perception 
or imagination, i.e., "reality" is defined as 
being something objective vs. subjective, 
no matter what individually or 
collectively is considered to be real. 
Two immediate physical aspects of this 
reality concern quantum mechanical 
phenomena. One is known as quantum 
entanglement where instant 
communication between a separated pair 
of photons leads to the assumption of 
entanglement, also coined "non-locality" 
or "non-spatial" aspect of reality which 

requires a deep revision of our common 
intuition of space topology in a sense of 
zero extension. The other concerns an 
appropriate interpretation of a relativistic 
quantum mechanical expression known 
as "Dirac equation" E = ± p2c2 +m0

2c4  
where what is called "matter" is unstable 
on principle with an implicit, infinitely-
probable, total radiation-catastrophe 
(matter-antimatter annihilation) if 
considered as a single particle equation. 
Up-until today, only asymmetric ad hoc 
hypothesis in the 2nd quantization of the 
Dirac-field with infinitely many 
additional particles assumed yield the 
self-evident conclusion that the world 
exists. 
 
An ongoing effort will dedicate further 
publications to these physical aspects of 
reality as well as to set theoretical 
subjects. 
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